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Charge Conservation    ☼ 
Current density, J, is a vector valued current per area, in SI units A/m2.    Performing a surface 
integral with J gives the total current passing through an area. 
 

surface

I =   d∫∫ J si  

For example, the current in the +az direction through the surface below is  
2 a

=0 =0

I =   d
π

φ ρ
∫ ∫ J si

 
If integration done about a closed surface, the result is the net current leaving the volume 
enclosed by the closed surface.  Assuming that charge is neither created nor destroyed within 
the volume, the net current out of the volume must equal the time rate of change of charge 
stored within the volume.   Here ds is assumed to be directed out of the volume. 

out
dQI   =  -   =   d
dt ∫∫

surface

J si  

Charge conservation is a generalization of KCL, where it is assumed that nodes cannot store charge. 
 
Point form of charge conservation ☼ 
Like any vector, the divergence theorem holds for current density. 

volume surface

   dv  =    d∇∫∫∫ ∫∫J Ji i s  

Using charge conservation 
 
Divergence holds for current density, which is electric charge flux.   
From the definition of charge and current density: 

surface
out

dQI   =  -   =    d
dt ∫∫ J si  

 
ρρ

volume volume surfacestationary
  volume

 dv
dQ d-   =  -   =    dv  =    d
dt dt t

−
∂
∂∫∫∫ ∫∫∫ ∫∫ J si  

 
Where ρ is volume charge density.   This result, together with the divergence theorem, 

volume surface

   dv  =    d∇∫∫∫ ∫∫J Ji i s  
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gives the point form of charge conservation. 

ρ
  

t
  =  - ∂

∇
∂

Ji  

Consider the physical meaning of the divergence of J.   The divergence of the current density 
must be the net current out per unit volume.  The net current out per volume is the time rate of 
change of the net charge per unit volume leaving a point.   
 
Example:  spherical shell  ☼ 
The current density in a spherical shell, .  Given rinner = 0.1 m and t = 1 cm, 
answer the following questions by using surface integrals.  Check your answer using volume 
integrals. 

2
r= 100 r   A/mJ a

 i)  Is the charge within the spherical shell increasing or decreasing with time? 
 ii) At what rate is the charge increasing or decreasing? 

 

For this problem, the surface integrals will be of the form out
dQI   =  -   =   d
dt ∫∫

surface

J si  

The volume integrals will be of the form out
volume

dQI   =  -   =    dv
dt

∇∫∫∫ Ji  

using surface integrals 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
2 2

r r r
=0 =0 =0 =0

3 3

dQ-   = 100 0.11  0.11  sin  d d  + 100 0.1  0.1  sin  d d -
dt
dQ-   = 100 0.11  4  -  100 0.1  4
dt

dQ    -0.416 C/s
dt

π ππ π

θ ϕ θ ϕ

θ θ ϕ θ θ ϕ

π π

≅

∫ ∫ ∫ ∫a a ai i ra
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check using volume integrals 

To use out
volume

dQI   =  -   =    dv
dt

∇∫∫∫ Ji , the divergence of J is needed. 

( )2 3
2

1  J = r 100 r  = 300  A/m
r r

∂ ⎡ ⎤∇ ⎣ ⎦∂
i  

 
2 0.11 3 3

2

=0 =0 r=0.1

dQ 0.11  - 0.1-   = 300 r sin dr d d  = 300 4
dt 3

dQ    -0.416 C/s
dt

ππ

θ ϕ

⎛ ⎞
θ ϕ θ ⎜ ⎟

⎝ ⎠

≅

∫ ∫ ∫ π
 

 
The charge in the shell is decreasing at a rate of 0.416 C/s.  That the charge is decreasing is 
reasonable since both J and the surface area increases as r increases.   
 
More current is leaving the outer surface of the spherical shell (where r is greater) than is 
entering the inner surface. 

 
Charge neutrality and relaxation time   ☼ 
If a net charge were introduced in a material, does the material return to a neutral state or does 
the material remain charged?  The answer lies in the material’s conductivity.  In a good 
conductor, charge moves rapidly and a localized net charge is rapidly eliminated.  On the other 
hand, if a net charge were introduced in a good dielectric (perhaps by ion implantation), the 
material would maintain a net charge for an extended period. 
 
From charge conservation and Gauss’ law, 

ρσ d    =    = -
dt

∇ ∇J Ei i      ε ρ   =    = ∇ ∇D Ei i  

 
Combining the two equations to eliminate E,  

( ) εε ρ ρ ρ o

- td  +  = 0               t  = e
dt

ρ
σ

σ
→  

Where  = ε τ
σ

 is the “relaxation time”, the characteristic time required for material to return to 

charge neutrality. 
 

• For copper, σ = 5.8 (108) S/m, ε = 8.854(10-12) F/m, τ = 1.5 (10-19) s 

• For undoped silicon, σ = 4.4 (10-4) S/m, ε = 1.045(10-11) F/m, τ = 2.4 (10-7) s 

• For glass, σ = 10-12 S/m, ε = 8.854(10-11) F/m, τ = 89 s 

• For fused quartz, σ = 10-17 S/m, ε = 3.365(10-11) F/m, τ = 3.4(106) s = 39 days 

 4

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ds-charge-relaxation/340-ds-charge-relaxation.html


Faraday’s law  ☼ 
In the early 1800's Michael Faraday discovered that when a loop of wire encircles a time-varying 
magnetic field, a voltage is induced about the loop of wire. 

 
In the loop of wire shown below, a voltage will be induced if a time-varying magnetic field 
passes through the area defined by the loop. 

-  
How is V related to the changing flux and how does one predict its polarity?  Faraday found the 
relation to be 

dV  =  -
dt
φ

 

 
In terms of the electric field and magnetic flux density vectors, 

loop surface

  
d  d   = -   d
dt∫ ∫∫E l Bi i s  

 
dl and ds are related by the right-hand rule.  With the fingers of your right hand in the direction 
of dl, your thumb will be in the direction of ds. 
 

The induced voltage is equal to the path integral of the electric field,  
loop

V =   d∫ E li

Consider for the moment that the wire is a perfect conductor, and begin the path integral at the 
negative sign of V in the direction indicated below.   Putting the fingers of your right hand in the 
direction of dl, results in the thumb of your right hand being directed upward, which is the 
direction of ds. 
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If the path is taken within the PEC, the path integral in the conductor will yield nothing and the 

induced voltage is .    What is required for the induced voltage to be positive?  As 

can be seen from the diagram ds is upward (this is determined by the RHR from dl) so that  
 in the relation below is negative.  

-

+

V =   d∫E i l

s  dB i
 

surface

  
dV  = -   d
dt ∫∫ B si  

 
In order for V is be positive, the time derivative must be positive.  So, with B directed as above, 
with ds and B in opposite directions, V will be positive if B is increasing with time. 
 
Another arrangement would also result in V being positive.  If B were directed upward rather 
than downward and were decreasing rather than increasing with time.  If these conditions were 
met, V would again be positive.  B and ds would be in the same direction so that  would 
be positive.  The only way to end with a positive result would be for the time derivative, d/dt, to 
introduce a negative sign – B must be decreasing with time in order for V to be positive. 

  dB i s

 
 
From this discussion, one can see that, for V > 0, two possibilities exist.  The first is that B is 
directed downward and is increasing with time.  
 

 
loop surface

  
d dV  =  -   d   = -   d
dt dt
φ

→ ∫ ∫∫E l Bi i s  

 
The other possibility is that B be directed upward and is decreasing with time. 
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Lenz’s law ☼ 
We are now in a position to appreciate the 
significance of the negative sign in Faraday’s law, 
referred to as Lenz’s law.  Connect a resistance to 
one of the loops above.  One can see, that for 
V>0, the direction of current flow will be in the 
same direction as dl. 
 

Now, eliminate the resistor and consider the wire 
to be a non-perfect conductor.  The direction of 
current flow would be unchanged. 
 
Consider this:  If the rate that B were increasing 
would rise, i would increase.  The magnetic field 
from i would be directed opposite to the flux which 
caused it to increase.  There’s a negative 
feedback mechanism at work.   
 
Consider what would happen without Lenz’s law.  In this case an increase in dB/dt would result 
in a increase in a current whose flux would add to the flux which caused it, thereby further 
increasing the current and so on.  This would violate the conservation of energy.  It is not 
physical. 
 
When Faraday began his experiments, it was not known what quantity was induced in a loop 
linked by a changing magnetic field.  Was the induced quantity a current or a potential?   
 
To distinguish between the two possibilities, Faraday used several rings of the same size and 
thickness, but made from different materials and measured the current.  He found that the 
current was less in those rings with lower conductivity and higher in those rings made from a 
material with higher conductivity.    
 
Upon further investigation, Faraday found the current was proportional to the conductivity.  With 
this experimental evidence, he proposed that the induced quantity in a loop was an 
electromotive force (a voltage) and that the current present in a shorted loop is simply Ohm’s 
law at work. 
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Faraday's law – transformer and motional emf ☼ 
Starting with the integral form of Faraday’s law, 

loop surface

  
d d

V  =  -   d   = -   d
dt dt
φ

→ ∫ ∫∫E l Bi i s  

 
If the surface over which the surface integral is taken is stationary in space, the only possible 
time variation of  

surface

  d∫∫ B si   

is in the explicit time variation of B.  In this case, the total time derivative outside the surface 
integral can be replaced by a partial derivative with respect to time operating on B.   

surface

V  =  -   d transformer emf
t

∂

∂∫∫
B si  

 
This electromotive force is termed transformer emf since the coils of transformers are typically 
stationary.     
 
Motional emf 
Consider a conductor moving in a magnetic field.  The charges within the conductor experience 
the magnetic component of the Lorentz force.  The force per-unit charge is an electric field 
(granted, it is not an electrostatic field, but it is an electric field and places a force on an electric 
charge). 

motional  = q (  x )      =   =   x 
q

→
FF v B E v B

l

 

 

The induced motional emf is    d   =   x  d( )∫ ∫E l v Bi i  

 
For a combination of motion and time-variation in the B field, these components add to give the 
total expression for the induced voltage. 

surface

  V  =   -   d +  (  x )  d        (d  and d  related by RHR)
t

∂

∂∫∫ ∫
B s v B l l si i  
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Example:  motional and transformer emf  ☼ 
A 100 T coil moves in a magnetic field produced by a current i(t).  The motion of the coil is in the 
x=0 plane with a velocity v.   
 i)  Given an expression for B in the x = 0 plane (assume air).   
 
 ii) find integral(s) for v(t) in the diagram shown below.   
 

i) For a current on the z-axis in the az direction, 
the resulting magnetic flux density is 

 i = 
2
μ
π φρ

B a  

In this expression, ρ is the distance from the 
current, m is the permeability and aφ is determined 
from the right hand rule.   
 
Adapting this relation to the problem at hand, z is 
the distance from the current, μo is the permeability 
of air, and placing your thumb along i(t) reveals ax 
to be the direction of the field in the x=0 plane. 
 

o
x

 i = 
2 z
μ
π

B a  

 
 
 

 

ii) ( )
surface path

1TV  = -   d +     d
t

∂
×

∂∫∫ ∫
B s v B li i  

 
 

( ) ( )

yz

z y

yz

z y z

y + w +v tz + h +v t

1T x
z=z +v t y=y +v t

y +v tz + h +v t

y y z z x z y y z z x y
z=z +v t y = y + w +v t z = z + h +v t 

o
x

o o

diV  = -    dydz  +
2 z dt

 i  iv  + v   dz  + v  + v   dy 
2 z 2 z

+ v

11

1 1

11

1 1 1

μ
π

μ μ
π π

⎡ ⎤ ⎡ ⎤× ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫

a

a a a a a a a

a i

i i

( )

a

( )
yz

z y z

y + w +v tz +v t

y y z z x z y y z z x y
z=z + h +v t y = y + v t z = z +v t 

o o i  i + v   dz  + v  + v   dy 
2 z 2 z

11

1 1 1

μ μ
π π

⎡ ⎤ ⎡ ⎤× ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫a a a a a a a ai i
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( )

o 1 z
1T

1 z

o 1 z

1 z

o z

1 z

o 1

i  

i 

w z  + h + v t diV  = - ln    (transformer emf)
2 z  + v t dt

z  + h + v t- ln     (from first part of path integral)
2 z  + v t

w v- i    (from second part)
2 z  + h + v t

z  + h+ ln
2

μ
π

μ
π

μ
π

μ
π

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

( )

o oz 1 z

1 z 1 z 1 z

o z

1 z

 i i 
 + v t z  + v t z  +h + v t (from third part)   - ln  = ln

z  + v t 2 z  + h + v t 2 z  + v t
w v+ i (from fourth part)

2 z  + v t
   

μ μ
π π

μ
π

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

1 z ⎞
⎟
⎠

 
  1TV = 100 V
 
Understanding is deepened when the problem is 
viewed in a qualitative light.  For example, given 
that the current is increasing with time, should we 
expect the transformer emf to be positive or 
negative?   
 
If the current is positive, should we expect the 
motional emf to be positive or negative?  How do 
the four components of the path integral contribute 
to the overall result for motional emf? 
 

 

Transformer emf:  From the direction of ds and B, it may be seen that the transformer emf 
should be negative if the field is increasing with time. 
 
Motional emf:  Along path 1, the first part of the path integral from the negative sign of v(t) to the 
positive sign, the motional emf term  ×v B  will tend to push a positive charge toward the 
negative (-) of v(t).  This contributes negatively to v(t) so that, in the sum, its contribution should 
appear as negative.  As one can see above it does. 
 
Similarly, the motional term along path 2 should appear negative in the sum, along path 3 
positive, and along path 4 positive.   
 
Contributions from 1 and 3 will be equal (they’re the same distance from the current and so see 
the same field) and opposite and will completely cancel. 
 
Contributions from 2 and 4 will cancel, but not completely.  Path 4 will dominate since it is closer 
to the current and sees a stronger field.   
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Example:  transformer and motional EMF  ☼ 
Transformer EMF:  Determine whether voltages v1 and v2 across the stationary loops are 
positive, negative, or zero for i) ωt = 0, ii) ωt = π/2, and iii) ωt = 3π/2. 

 
 

i)  for ωt = 0, cos(ωt) is positive but its derivative is zero.   

 
 

This and the direction of B and ds provide the information needed to determine whether v(t) 
is positive, negative or zero. 

 
 

The determination centers on the evaluation of the integral (stationary loops). 

 
surface

V = -   d
t

∂
∂∫∫
B si  

 
From the diagrams above, it can be seen that B and ds are in the same direction so that 
the dot product of B and ds is positive.  To cancel the negative sign and obtain a positive 
voltage, d/dt will need to introduce another negative sign (B decreasing with time).   
 
Here B is not changing with time.  Its derivative is zero – B is at a maximum.  In this case, 
therefore, V = 0. 
 

ii) Here, B is decreasing with time.  Following the reasoning given above, V > 0. 
 
iii) Here, B is increasing with time.  Following the reasoning given above, V < 0.. 
 
Motional EMF: Consider the loops to be moving.   Assume the loop on the right is moving 
straight up, parallel to the current, and that the loop at the left is moving left, away from the 
current.   
 
Determine whether the motional EMF for v1 and v2  are positive, negative, or zero for   
iv) ωt = 0, v) ωt = π/2, and vi) ωt = π 

 11

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ds-faraday-TM-example/340-ds-faraday-TM-example.html


Example: in-class exercise    
Work with neighbors to develop a reasonable, physics-based circuit model of the system shown. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 12



Faraday’s law – transformer and motional emf terms 

  
path surface

d  d  = -   d
dt∫ ∫∫E l Bi i s  

 
For a function of time and space, the total time derivative can be split into two operators, the first 
a partial derivative of time for explicit time dependence and the other linked to movement and 
spatial changes.  

 
d x y z =  +  +  +   =  +   
dt t t x t y t z t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∇

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
v i  

  
Using this approach on the differential relation in Faraday’s law. 

( ) ( ) ( ) ( )d  d  = -   d  = -   d  -     d
dt t

∂
∇

∂
E l B s B s v B si i i i i  

 
Taking this result with the vector identity below. 

( ) ( ) ( ) ( ) ( )   =  +    -    +   ∇ ∇ × × ∇ ∇ ∇v B B v B v B v v Bi i i i  

 
which reduces to ( ) ( ) ( )   =  +   ∇ ∇ × × ∇v B B v v Bi i  for constant v. 

 
Using these results in the integral form of Faraday’s law, we have 

( ) ( )

( ) ( )

( )

path surface surface

path surface surface

path surface

  d  = -   d    -  +     d
t

  d  = -   d   -   d       since     = 0
t

  d  = -   d   + 
t

∂
⎡ ⎤∇ × × ∇⎣ ⎦∂

∂
⎡ ⎤∇ × × ∇⎣ ⎦∂

∂
⎡ ⎤∇ × ×⎣∂

∫ ∫∫ ∫∫

∫ ∫∫ ∫∫

∫ ∫∫

BE l s B v v B s

BE l s B v s B

BE l s v B

i i i i

i i i i

i i ( )

( ) (

surface

path surface path

  d -    =   

  d  = -   d  +   d        using Stoke's theorem
t

× ×⎦

∂
×

∂

∫∫

∫ ∫∫ ∫

s B v v B

BE l s v B l

i

i i i )
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Inductance   
In electrical circuits, inductance is defined by the element relation,  

 diV = L
dt

 

 
In magnetostatics, self-inductance was defined as the ratio of flux linkage, λ, to the current, i. 

 L = (see magnetostatic notes for more on flux linkage)
i
λ    

 
Let’s trace the path from magnetostatics to the element relation 

1. From either Biot-Savart or from Ampere, the magnetic field intensity is proportional to the 
current producing it. 

  H   

 i

i∝

2. For a constant permeability, the magnetic flux density, and therefore the flux passing 
through a loop, are also proportional to the current producing the magnetic field.   

   φ ∝  
3. Taking a time derivative of the above equation and using Faraday’s law, we obtain, the fact 

that the voltage induced in a current carrying loop is proportional to the time derivative of the 
current. 

  diV  
dt

∝    (the negative in Faraday’s law is accounted for by labeling V and i with PSC) 

4. The proportionality constant is the inductance. 

  diV = L
dt

 

 
Flux, flux-linkage, and the self-inductance of an N-turn coil   
A new term, flux linkage, can help in discussions of inductance.  The flux linkage of a coil is the 
sum of the flux linking (passing through) the coil’s loops.   
 
As can be seen from Biot-Savart, or from Ampere’s law, the magnetic field, H(r), is determined 
by the current distribution.  If the permeability is known, the magnetic flux density can be 
determined and so also the flux linking a single loop.  For a coil consisting of a single loop, the 
flux linkage is equal to the flux linking the single loop, λ = φ1T. 
 

 

1T
surface

 =   dφ ∫∫ B si  
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What is the situation if, instead of a single loop, there is a closely wrapped coil of N-turns?    If 
the loops are wrapped sufficiently tight so that the flux linking them is essentially the same, the 
flux produced would be φ = Nφ1T.  This can be seen merely by looking at Ampere’s law, if there 
are N turns, each carrying a current I, then the Amperian path would enclose a total of Ni 
current and the flux density and therefore the flux linking each loop would increase in like 
manner.  

If we can assume that the turns are close to one another and any “leakage flux”, flux that wraps 
some but not all the coils, can be neglected, then the total flux linkage, λ, is the product of the 
number of loops and the flux linking each loop. 

For the N-turn coil, the total flux due to the current i is  
φTotal = Nφ1T (neglecting “leakage flux”)  The flux linkage 
for the N-turn coil is therefore  
λ = N(φTotal) = N2φ1T. 
 

 

The self-inductance of a coil is defined as the ratio of flux linkage to current. 

L = 
i
λ  

 
For the N-turn coil, the voltage induced across each loop is, by Faraday’s law, 

( )

( )

total
loop

1Ttotal
loop

2
1T2total 1T

coil

dV  =  (negative in Faraday's law is accounted for by labeling V and i PSC)
dt

d NdV  =  = 
dt dt

d Nd d dV  =  N  = N  =  = 
dt dt dt dt

λ

φ

φφ

φφ φ

 

 
For a single loop, the ratio between the current causing the flux and the flux linking the loop is 
the reluctance of the flux path, i = R φ1T 

( )2 21T
coil

2

coil

d idV  = N  = N
dt dt

N di diV  =  = L
dt dt

φ R

R

 

 
So the self-inductance parameter, so called since the voltage induced across the coil is caused 
by the current flowing in the coil itself, can either be defined as 

VL = 
di dt

 or as 
22 2

1T

!T

NN N =  =  = 
i i

φ
i
λ

φR
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Example:  Ampere, Faraday, inductance, and the magnetic circuit approximation ☼ 
If a magnetic core has sufficient permeability, it is possible 
that the flux in the surrounding materials, having a much 
lower permeability may be neglected.  This is assumed in 
this problem.   
 
This implies that the magnetic flux is assumed to be entirely 
confined to the magnetic core.  Apparently the magnetic flux 
is mainly due to the orientation of internal magnetic dipoles 
within the core.   
 

 
That is, thinking of the magnetic flux as ( )o o r o=  =  +  - 1  =  + μ μ μ μ μB H H H H M

i

, it is assumed 

here that the magnetization term dominates the flux.  This being true, it can therefore be argued 
that the symmetry of the flux density vector must be that of the material.  So that,  
 
from symmetry, B = B(ρ) aφ   →   H = H(ρ) aφ    

 

By Ampere,  
2

 = 0

H   d  = N
π

φ φ
φ

ρ φ∫ ia a

b t

 = a z = 0

Ni N  i
 =          =  

2 2

N  i N t b
 =   dz d    =  ln   i

2 2

φ φ

φ φ
ρ

μ
πρ πρ

μ μ
ρ

πρ π

⇒

⎛ ⎞φ ⎜ ⎟
⎝ ⎠∫ ∫

H a B a

a ai
a

 

 
d

V = N
dt
φ   (Lenz’s law accounted for by labeling V and i PSC) 

2 2N t b di N t b
V =  ln       L =  ln

2 a dt 2 a
μ μ
π π

⇒⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
What would the result have been if N = 1? 

1T 1T

1T 21T
1T 1T

t b t b di
 = ln   i       and     V  = ln   

2 a 2 a dt

V t b
L  =  =  = ln                 (in general, L = N L )

di dt i 2 a

μ μ
π π

μ
π

φ

φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The above method of finding the inductance is effective for those FEW cases in which Ampere’s 
law can be utilized effectively—for those few cases where simple symmetry exists. 
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For similar cases, where there is a high-permeability core, additional assumptions can be made 
leading to the magnetic circuit approximation. 

1. The magnetic field, H, is parallel to the path, meaning the Amperian path 

2. The magnetic circuit approximation assumes the flux density, 



Notice the form of the result 

( )  

2

per  loop

2 2
total   =   

  =    A   =   

  

d I A di
V N N

dt dt
A

N = 
 V N N =      where  is the core reluctance
di dt A

μ μ

μ
μ

l l

l
R

l R

 

 
Ideal Transformer  ☼ 
Transformers allows voltage levels to be readily changed.  The ideal transformer is a useful 
model where the core permeability is assumed to be infinite.   Since the core’s permeability is 
assumed infinite, the core’s reluctance is zero. Also, for a core with infinite permeability, all the 
magnetic flux is confined to the core, there is no leakage flux.  Leakage flux is the flux “leaking 
out” from the core.  It is flux not confined to the core.  Leakage flux links one winding, or part of 
one winding, and not necessarily the other winding.   

 
 
The presence of leakage flux results in difference in flux linking the two windings.  In the ideal 
transformer, infinite core permeability eliminates leakage flux, which results in the same flux 
linking the two windings.  
 
If both coils are linked to the same flux then, by Faraday’s law 

1 1
1 1 2 2

2 2

v (t) Nd dv (t) = N  v (t) = N  = 
dt dt v (t) N
φ φ

→   

 
The is a time-domain relationship.  Any change in v1(t) is simultaneously reflected in v2(t).    
 
Next, consider the magnetic circuit of 
the ideal transformer.   The magnetic 
circuit consists of two sources of 
magnetomotive force (the two coils) and 
no reluctance (since the core 
permeability is assumed infinite).  
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From the magnetic circuit, the currents are also related in the time domain. 

1 2
1 1 2 2

2 1

i (t) NN i (t) = N i (t)  = 
i (t) N

→  

 
For the ideal transformer, power is conserved,   1 1 2 2 in outv (t) i (t) = v (t) i (t) p (t) = p (t)→

Considering the important special case of sinusoidal steady-state, phasor relations are obtained 
where the voltage and current amplitudes are related by the turns ratio and where the phases of 
the voltages are equal to one another and where the phases of the currents are equal to one 
another. 

1 1 v1 1 1 1 i1

2 2 v2 2 2 2 i2

V N I =  =  =  = 
V N I

∠θ ∠θ
∠θ ∠θ

V I
V I

2

1

N
N
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Electromagnetics  ☼ 
One term must be added to Ampere’s law in order that a complete basis for electromagnetics is 
formed.  This term, the displacement current, has not been included to until this point.  The 
displacement current term in Ampere’s law allows the four Maxwell equations to be consistent 
and provides a theory capable of simultaneously describing electricity, magnetism, and optics.  

Ampere’s law, with the displacement current term is 
 

d
path

 d  = I + I∫ H li  

 
I is due to the movement of free charge—whether by convection or by electrical conduction. 
 
Id is the displacement current and is equal to the time rate of change of the electric flux which, in 
materials with a high permittivity, can be dominated by the movement of bound charge.   
 
The permittivity of a material is a measure of the ease in which bound charge is polarized when 
exposed to an external field.  If the field is time varying, the polarization (the extend to which 
bound charge is separated) will be time varying as well.   
 
In such a case, since the field changes with time, the degree of polarization (the degree of 
charge separation) will also change with time.   
 
 

 
 
Charge is moving.  Moving charge is current.  In this case the movement of bound charge is 
associated with the displacement current – that is, Id. 
 

d
path surface surface

path surface

  d  = I + I  =   d  +   d
t

        d  =  +   d
t

∂
∂

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

∫ ∫∫ ∫∫

∫ ∫∫

DH l J s

DH l J s

i i

i i

si
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Maxwell’s equations (after James Clerk Maxwell) 

Integral form 
 

i. Gauss’ law      v
surface volume

 d  =  dvρ∫∫ ∫∫∫D si  

 

ii. Conservation of magnetic flux  
surface

 d  = 0∫∫ B si  

 

iii. Ampere’s law     
path surface

 d  =  + d
t

∂
⋅

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫∫

DH l Ji s  

 

iv. Faraday’s law     
path surface

d
 d  = -   d

dt∫ ∫∫E l Bi i s  

 
 

Using the divergence theorem for i. and ii. 
surface volume

 d  =    dv∇∫∫ ∫∫∫F s Fi i  and Stoke’s theorem 

for iii. and iv., ( )
path surface

  d  =  x   d∇∫ ∫∫F l Fi i s  

Maxwell’s equations can be expressed in point form (as differential equations) 
 
 
Point form 
 

i. Gauss’ law      v  = ρ∇ Di  

ii. Conservation of magnetic flux    = 0∇ Bi  

iii. Ampere’s law      x  =  + 
t

∂
∇

∂

DH J  

iv. Faraday’s law      x  = -
t

∂
∇

∂

BE  

 
Constituent equations include material properties into the theory.  Taking the materials to be 
isotropic, we have 

J = σE    D = εE    B = μH 
 

The Lorentz force equation gives the force on a charged particle  

 F = q(E + v x B) 
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Just two of Maxwell’s equations are independent – Faraday and Ampere.  These two equations, 
charge conservation, and experimental observation imply the Gauss’ law and the conservation 
of magnetic flux. 
 
To show this, take the divergence of Ampere. 

( )   x  =    + 
t

∂
∇ ∇ ∇

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

DH Ji i  

Using the fact that the divergence of the curl is identically zero. 

( )

   +  = 0
t

   = -    = -   ,  but    = -   (charge conservation)
t t t

   -  = 0 which implies    -  is independent of time
t

ρ

ρ ρ

∂
∇

∂

∂ ∂ ∂
∇ ∇ ∇ ∇

∂ ∂ ∂
∂

∇ ∇
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

DJ

DJ D J

D D

i

i i i i

i i

 

 
Since, experimentally, we can force the charge density and electric field to both be zero in a 
given region, this implies 

   -  = 0
  =

ρ

ρ

∇

∇

D
D  
i

i
 

 
This observation is can be seen as motivation to introduce the displacement term in the first 
place.  Without it, Ampere’s law is not consistent with charge conservation.  That is, before 
adding the displacement current term,  Ampere’s law gave ( )  x  =    = 0∇ ∇ ∇H Ji i  

But, by charge conservation ( )v   = - - -
t t v t

 =  = ρ ψ∂ ∂ ∂ ∂
∇

∂ ∂ ∂ ∂
⎛ ⎞ ∇⎜ ⎟
⎝ ⎠

J Di i  

So that,    +   = 
t

0∂
∇

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

DJi , which Ampere’s law as  x  =  + 
t

∂
∇

∂

DH J  would be consistent with 

charge conservation. 

 
Similarly, take the divergence of Faraday. 

( )   x  = 0 =   -  = -  (   )
t t

-  (   ) = 0 this implies    is independent of time
t

∂ ∂
∇ ∇ ∇ ∇

∂ ∂

∂
∇ ∇

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

BE B

B B

i i i

i i

 

 

Since, experimentally, we can force the magnetic field to be zero in a given region,  

   = 0∇ Bi  
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Traveling electromagnetic waves: an amazingly brief history 
The presence of Maxwell’s displacement term in Ampere’s law resulted in a theory which 
predicts traveling waves.  The theory predicts that these waves travel at a speed determined by 
the electrical and magnetic properties of the medium in which they travel.  This speed turned out 
to be that of light.   
 
This remarkable discovery led to speculation that light waves are themselves electromagnetic 
waves, a fact confirmed in 1888 by Heinrich Hertz.  The result was that “electricity and 
magnetism” and “optics” were joined under one theory – electromagnetics. 
 
Traveling waves  ☼ 

The point form of Faraday’s law is = -
t

∂
∇ ×

∂

BE .  Taking the curl of this equation, 

( ) ( ) ( )2 =  -  =  -  = -
t t

∂ ∂
∇ × ∇ × ∇ ∇ ⋅ ∇ ∇ × ∇ ×

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

BE E E B  

In a source free region (ρv = 0) and (Jsource= 0) region.  

( ) ( )

( ) ( )

2 2 v

2

2
source conduction

   -  = -  = -     =  = 0
t

 =  = 
t t

 =  +  =  +  = J  + J  + 
t t t

μ

μ σ ε

ρ∂
∇ ∇ ∇ ∇ ∇ × ∇

∂ ε

∂ ∂
∇ ∇ × ∇ ×

∂ ∂
∂ ∂ ∂

∇ ∇ ×
∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

E E E B E

E B H

E DE E H J

i i

t
∂

∂
⎞
⎟
⎠

D

 

Note: the assumption of Jsource = 0 does not imply σ = 0.  Therefore, Ampere’s law reads:  

  conduction   =  +  =  + 
t t

σ ε
∂ ∂

∇ ×
∂ ∂

D EH J E  

 
The result is the wave equation. 

 2
2

 -  -  = 0
t t

2

μσ με
∂ ∂

∇
∂ ∂

E EE  

  
Wave equation for σ = 0 

2

2
2

2

 = 
t t

 -  = 0
t

με

με

∂ ∂⎛ ⎞∇ ⎜ ⎟∂ ∂⎝ ⎠
∂

∇
∂

EE

EE
 

 
Solutions to this equation are waves which travel through space.  For example, consider the 
scalar wave equation,  
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2 2

2 2
g 1 = 

z v t
∂ ∂
∂ ∂ 2

g  

 
Solutions for the traveling wave g have the argument (t ± z/v), with the +sign corresponding to a 
wave traveling in the –az direction and the –sign corresponding to a wave traveling in the +az 
direction.  The form of the solutions are 

zg = g t  
v

⎛ ⎞±⎜ ⎟
⎝ ⎠

 

 
This solution satisfies the wave equation.  Assigning the argument α = t ± z/v, substituting and 
using the chain rule of differentiation, first for the spatial derivative, 

22

2

g g g 1 =  = 
z z

g g 1 = 
z z v

∂ ∂ ∂ ∂ ⎛ ⎞±⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞±⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

α
α α

α

v
 

 
and next for the time derivative, 

( )

( )
2

2
2

g g g =  = 1
t t

g g = 1
t t

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂⎛ ⎞

⎜ ⎟∂ ∂ ∂⎝ ⎠

α
α α

α

 

 

So that the form of the solution is zg = g t  
v

⎛ ⎞±⎜ ⎟
⎝ ⎠

.    

 
The form of the function g needs to be determined.  From the wave equation, one can see the 
requirement is for the second derivative with respect to (w.r.t.) position be equal to the second 
derivative w.r.t. time.   Harmonic functions (sinusoids or exponentials) will work.    
 
 
Using cosines, 

 For a wave traveling in the +az direction,  x
zE (z,t) = E cos t -  
v

+ + ⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 For a wave traveling in the -az direction,  x
zE (z,t) = E cos t +  
v

− − ⎛
⎜
⎝ ⎠

⎞
⎟   

 
These represent electric waves.  The electric vector points in the ax direction and travels either 
in the +az or the  -az direction.   When one says the electric vector points only in the ax direction, 
what is meant is that the vector has only an ax component and that it is positive. 
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Using vector notation for the wave traveling in the +az direction. 

x x
z = E (z,t)  = E cos t -  
v

+ + ⎛ ⎞
⎜ ⎟
⎝ ⎠

E a xa  

 
For the wave traveling in the -az direction. 

x x
z = E (z,t)  = E cos t +  
v

− − ⎛ ⎞
⎜ ⎟
⎝ ⎠

E a xa  

 
A phase, φ, could be added to the arguments and the solutions would still satisfy the wave 
equation.  The arguments could also be multiplied by a constant and remain solutions to the 
wave equation. 
 
This leads to discussing a common alternate form of argument.    This is the form of the 
argument that will me used most often in our work.  

 z zt +  = t + where f is linear frequency and  is the wavelength
v f

λ
λ

 

 
Multiplying the argument by 2πf, 

z z2 f t +  = 2 f t +  = t + z
f 2

⎛ ⎞
π π ω⎜ ⎟λ λ π⎝ ⎠

β  

 
Where ω = 2πf is the angular frequency and β = 2π/λ is the wavenumber. 
 
Writing the argument in this form,   

( )
( )

x x x z

x x x z

 = E (z,t)  = E cos t - z  for wave traveling in +  direction

 = E (z,t)  = E cos t + z  for wave traveling in -  direction

+ +

− −

ω β

ω β

E a a a
E a a a

 

 
As before, one is free to add a phase to the arguments.   
 
Using Cartesian coordinates, the vector wave equation for E can be expressed as: 

2  = 
t t

με ∂ ∂⎛ ⎞∇ ⎜ ⎟∂ ∂⎝ ⎠

EE  

(

(

(

x x x x
x2 2 2 2

y y y y
y2 2 2 2

z z z z
z2 2 2 2

E E E E +  +  =  component)
x y z t
E E E E

 +  +  =  component)
x y z t
E E E E +  +  =  component)
x y z t

2 2 2 2

2 2 2 2

2 2 2 2

με

με

με

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

a

a

a
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Comparing v in the scalar wave equation to the factor με in the vector wave equation from 
Maxwell’s equations, it is clear that  

v = 1 εμ   

 
In vacuum or free space, ε = εo and μ = μo, v = c 

8
-12 -7

o o

1 1
c =    = 2.998 (10 ) m/s

8.854(10 ) F/m  4 (10 ) H/mε μ π
≅

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 

 
This result provided solid evidence that electricity, magnetism, and optics might well be simply 
aspects of a more general electromagnetic theory.  

 
Plane waves  ☼ 
Plane waves are waves in which the wave fronts 
are planes.    An example  of a plane wave, 
consider an electric vector E = Exax and take Ex 
to depend only on z and t,  

x x
2 2

E E = 
z t

με∂ ∂
∂ ∂

2 2

 

 
The solution must be a function for which its 2nd 
derivative with respect to z is equal (aside from 
a constant multiplying factor) to its 2nd derivative 
with respect to t.   

( )xE (z,t) = E  cos t z+  ω β ϕ± ± ∓ ±  

Since the wave’s phase is constant across 
planes parallel to the x-y plane, these waves are called plane waves.  Since their amplitude 
and direction are uniform on these planes, they are called uniform plane waves. 
 
Wave travel arbitrary directions – the wave vector ☼ 
The general formulation of a uniform plane wave traveling in a lossless medium includes the 
vector’s magnitude and direction, Eo, and describing its travel by a wave vector β = β aβ.  The 
wave vector’s magnitude is the wavenumber β = 2π/λ, with its direction in the direction (aβ) of 
wave travel. 

( )o( ,t) = cos t -    + ⎡ω φ⎤⎣ ⎦E r E rβ i  (T.D.)   (F.D) (-j   j
o( ,t) =  e eφω rE E β i )

)

 
Where Eo and β are orthogonal for a TEM wave.  Expanding the relationship using Cartesian 
coordinates. 

( ) ( ) (ox x oy y oz z x x y y z z x y z(x,y,z,t) = E  + E  + E cos t -  +  +   x  + y  + z  +  ⎡ ⎤ω β β β φ⎣ ⎦E a a a a a a a a ai
 

 26

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ds-electromagnetic-waves/340-ds-electromagnetic-waves.html
http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ds-electromagnetic-waves/340-ds-electromagnetic-waves.html


Harmonic analysis  ☼ 
These plane waves could describe traveling EM waves at one frequency or they could be 
Fourier components of more complex traveling waves.   
 
Why use complex valued waves?  The reason is that the mathematics is often simpler, the 
same reasons that phasors are used in circuit analysis for sinusoidal steady-state analysis.   

( ) ( )

+

+
+ + + +
x

+ + - +
x

j t- z+

j j z j t -j z j t

E (z,t) = E  cos t- z+  = Re E e

E (z,t) = Re E e e e  = Re E e e

ω β ϕ

ϕ β ω β ω

ω β ϕ ⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

  (wave traveling in +az direction) 

( ) -- - - - -
x

j j z j t j z j tE (z,t) = E  cos t+ z+  = Re E e e e  = Re E e e  ϕ β ω β ωω β ϕ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  (travel in -az direction) 

Harmonic analysis is similar to phasor analysis (phasor analysis is a special case).  Taking ϕ+

and ϕ−   be zero, the frequency-domain plane waves can be identified. to

+ -
x

-j z jβzE (z, ) = E e  + E eβω  

p

2 2 f =  =  =  = 
f v

π π ωβ ω με
λ λ

 

Maxwell’s equations in the frequency-domain (harmonic analysis) 
From the above discussion, it is clear that as long as the field varies harmonically with time, a 
corresponding complex field can be constructed, where its real part is the original field. 

( ) ( ) ( ){ } ( ){ }
{ } ( )

+ +

+

-j -j+

-j

j t + j j t

j t j

(x,y,z,t) = cos t -  +  = Re  e e  = Re e e e

 = Re e   =  e e

ω φ φ ω

ω φ

φ+ + +

+

⎡ ⎤⎣ ⎦
r r

r

E E r E E

E E E E

β β

β

βω i i

i

i
 

 
Just as in phasor analysis, the derivative with respect to time corresponds to a jω multiplier in 
the frequency domain. 

{ } { }j t = Re e  = Re
t t

   j
t

ω

ω

∂ ∂ ⎧
⎨∂ ∂ ⎩ ⎭

∂
↔

∂

E E

E E

j t j te  = Re e  j
t

ω ωω⎫
⎬

∂
∂

E E
 

In the frequency domain, Maxwell’s equations become 

 = -j

 =  + j

   = 

   = 0

ω

ω

ρ

∇ ×

∇ ×

∇

∇

E B
H J D
D
B
i

i
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Example: 100 MHz electric wave traveling in air, into the center of the first octant  ☼ 

x y
1 1 1 =   +   +  
3 3 3β

⎛ ⎞
⎜ ⎟
⎝ ⎠

a a a za  

 
Choosing E perpendicular to travel 

E x y
1 1 2 =   +   -  
6 6 6

⎛ ⎞
⎜ ⎟
⎝ ⎠

a a a za  

 
Since the wave is traveling directly into the center of 
the first octant, and since it is clear that  

   ( ) ( ) ( )22 2
x y zcos  + cos  + cos  = 1θ θ θ

 
The angles for the directional cosines, all equal are,   

( )-1cos 1 3   54.7°≅  

 
From the propagation speed and the frequency, the wavelength and wavenumber can be found, 

( )
( )6

3 10  m/sc =  =  = 3 m
f 100 10  Hz

λ
8

    β = 2π/3 m-1.  

( )x x y y z z =   = cos  + cos  + cosββ β θ θ θa a aβ a  

 
Suppose further that the amplitude of the electric wave is 100 V/m.  Given that E and β are 
perpendicular, it is required that  
 
Therefore, the traveling wave is described in the time domain as  

x y z
1 1 2 x y z =   +   -   100 cos 2 10  t -  -  -  V/m
6 6 6 3 3 3

⎛ ⎞ ⎛
π⎜ ⎟ ⎜

⎝ ⎠ ⎝
E a a a 8 ⎞

⎟
⎠

 

 
In the frequency domain, the wave is described as 

x y z-j  +  + 
3 3 3

x y z
1 1 2 =   +   -   100 e  V/m
6 6 6

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

E a a a  
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TEM waves  ☼ 
Consider a frequency-domain description of a time-harmonic uniform plane wave, pointing in the 
ax direction, and traveling in the az direction. 

x
-j z =  Ee βE a  

The accompanying magnetic vector can be found from Faraday. 

 = -jω∇ ×E B  
 
Solution 

1 j =  =  = 
-jω ω

μ ∇ × → ∇
μ

B H E H ×E  

 

y yz x z
x y

E EE E E Ej =  -  +  -  +  - 
y z z x x yω

⎡ ⎤∂ ∂⎛ ⎞ ⎛∂ ∂ ∂ ∂⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜⎜ ⎟μ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝⎣ ⎦

H a a x
z

⎞
⎟
⎠
a  

 

( )

x y

y y y

-j z -j z

-j z -j z -j z -j z

j 0 0 Ee 0 0 Ee =  -  +  -  +  - 
y z z x x y

j E = -j Ee   = Ee   = Ee   = e  

β β

ω

ω
ω ω ω

β β β

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟μ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

εμβ
β

μ μ μ μ
ε

H a a a

H a a a

z

y
β a

a

 

The electric and magnetic vectors perpendicular and both are perpendicular to the direction of 
propagation. a a  E H   = β×

E =  =
H

μη
ε

 has units of Ω and is 

called the wave (or intrinsic) 

impedance,  o
o

o

 =   377μ
η

ε
≅ Ω  

The result is 

 1  =   
ηβ ×H a E   or use Faraday’s law 

   =   η β×E H a   or use Ampere’s law 

 

2 =  = 

v = f  =  (general)

1v =  (lossless only)

μ πη β
ε λ

ωλ
β

ε μ
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Example: plane waves ☼ 
Take εr = 4, μr = 1, find i) v, ii) λ at f = 1 GHz, iii) β, iv) description of the electric vector and v) 
description of the magnetic vector. 
 

i) 
-12 -7

o o

  
1 1 1v = 

4 2 8.854(10 ) F/m  4 (10 ) H/mε μ π
≅

⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦
 

8v   1.5 (10 ) m/s≅  
 
ii) the wavelength for f = 1 GHz = 109 Hz 

8

9
  

v 1.5 (10 ) m/s
=  =  = 0.15 m

f 10  Hz
λ  

 
iii) β for f = 1 GHz 

-1 
2 2 40

 = =  = m
0.15 m 3

  
π π π

β  
λ

 

 
iv) the mathematical description for this electric field, traveling in the +az direction.  The field points 

in the +ax direction and has an amplitude of 2 mV/m.  Take the phase, ϕ+ , to be zero. 
 -express in the time-domain 

9
x

40 = 0.002 cos 2 10  t  -    V/m
3

zπ⎛ ⎞π⎜ ⎟
⎝ ⎠

E a  

 
 -express as a frequency-domain vector 

x

40-j z
3 = 0.002 e   V/m

π

E a  
 

v) give the corresponding magnetic vector 

 9
y

0.002 40 =  cos 2 10  t  -    A/m
188.5 3

zπ⎛ ⎞π⎜ ⎟
⎝ ⎠

H a  

 
 -express as a frequency domain vector 

y

40j z
30.002 =  e    A/m

188.5

π

H a  

 
 
 
 
 

 30

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ds-plane-waves-1GHz/340-ds-plane-waves-1GHz.html


Sources for TEM waves   
Strictly speaking, uniform plane waves do not exist.  By definition, a plane wave extends over an 
entire plane and would therefore have infinite energy.   
 
The two sources for uniform plane waves would be 1) planes of charge, varying sinusoidally in 
time and 2) planes of current, again varying sinusoidally in time. 
 
Why do we study uniform plane waves when they don’t even exist? 

i)  wave fronts that are distant from their source approximate plane waves 
 

 
 
 

ii) using superposition, plane waves can be combined to produce more complex forms 
 
 same strategy as that of time-domain analysis [finding system response to impulse, 
 then using superposition (convolution) for find system response to general input] 
 

same strategy as in frequency-domain analysis [finding sinusoidal response, they using 
superposition (Fourier) to find system response to general input] 
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Example: generation of plane waves   
Given the surface current K =  az2 sin(ωt) A/m  
on x=0 plane. Given the time-domain and 
frequency-domain waves for all space (assume 
free space or air). 
 
Given this symmetry, it is clear that the 
magnetic vectors must point in ±ay direction 
 

 
Harmonic solutions satisfy the wave equations obtained from Maxwell’s equations.  The solution will 
also meet boundary conditions and satisfy symmetry requirements. 
 
From symmetry, there are two waves, one traveling in the +ax direction for x>0 and the other 
traveling in the -ax direction for x<0. 
 

Solutions are  
( )
( )

y

y

sin t - x  x>0
 = 

-sin t + x  x<0
⎧ ω β⎪
⎨ ω β⎪⎩

a
H

a
.   

 
To check these results, confirm that the boundary conditions for H are met.  

( )n 1 2   -  = ×a H H K  

 
 
Example: transverse electromagnetic (TEM) waves   
An electric field with a magnitude of 188.5 V/m 
points in the az direction and travels parallel to the 
x-y plane as shown.  The wavelength is 700 nm 
and the medium is air.  Give the frequency domain 
description of E and H. 
 

 
 

( ) ( )
( ) ( ) ( ) ( )

-9 -1 6 -1

6 -1 6 6
x y x

 = 2 /700 10  m   9.0 10  m

 =  = 9.0 10  m cos 45°  + cos 45°  = 6.3 10 +  6.3 10  mβ

β π ≅

βa a a aβ -1
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( ) ( )

( ) ( )

6 6

6 6

z

yx

-j 6.3 10 x + 6.3 10 y

-j 6.3 10 x + 6.3 10 y

 = 188.5 e    V/m

188.5 =  e   -   A/m
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Earth’s magnetic field 
What is the source of earth’s magnetic field?  From the structure of the earth—with its solid, 
mainly iron inner core, liquid nickel-iron outer core, , plastic mantle and rocky outer crust—it is 
tempting to suppose that the inner and outer cores rotate at different speeds than the mantle 
and crust and that the core would therefore as a rotating permanent magnetic since both nickel 
and iron are ferromagnetic.   
 
The problem with this conjecture is that the core is at too high a temperature for either nickel or 
iron to act as permanent magnets.  It is characteristic of ferromagnetic materials that they have a 
maximum temperature, the Curie temperature (Tc), above which they cannot maintain their 
ferromagnetic properties.  The Curie temperatures for iron and nickel are below 800 °C (360 °C for 
nickel and 770 °C for iron) while the outer 
core is at 5000 to 6000 °C and the inner core 
is even hotter.   
 
Current evidence points to the earth’s 
rotation as being the ultimate source of the 
fields but, rather than the core being a 
rotating permanent magnet, the rotating core 
carries electrical current which produces the 
magnetic field. The picture is that of a 
current loop giving rise to a magnetic field. 
 
An important test case for this model is 
Venus, which rotates very slowly ( a 
Venutian day is about 240 earth days).  Our 
model would predict little magnetic field 
since the source of the movement carrying 
the electric current is largely absent in the 
case of Venus.  This is precisely what we 
find. 
 
 1) The geographic poles and the magnetic poles are not aligned.  Moreover, geographic data 
provide evidence that the position of the magnetic poles vary and may flip.  
 
2) Labeling for the magnetic poles does not follow the normal convention where the north pole 
is the source of flux and the south pole is the flux sink.  The earth’s magnetic “south pole” is the 
source of flux and the magnetic “north pole” is the flux sink.  This results in the north pole of a 
compass needle point towards the earth’s magnetic “north pole” which would actually be its 
magnetic south pole if the normal convention were followed. 
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3) The surface strength of earth‘s magnetic field ranges between 0.3 and 0.6 gauss (30 to 60 
μT).  Compare this to a typically values of 2000 gauss for flexible permanent magnets, to 3500 
gauss for ceramic magnets, to 10,000 gauss for AlNiCo magnets, to over 10,000 for neodymium 
magnets.  Also compare to the approximately 10 μT field 2 cm from a 1A line of current in air. 
 
Aside from allowing the compass to be used for navigation, what does the earth’s magnetic field 
do for us?  Answer:  Much. 
 
Solar wind consists of high 
energy charged particles 
(electrons, protons and 
ionized helium) which escape 
from the sun and travels 
radially from the sun.  Vital to 
all surface life on earth is the 
fact that earth’s magnetic field 
deflects the solar wind which 
would sweep away its 
atmosphere.   
 
 
      
           Artist rendition: National Geophysical Data Center 
 
 
 
The aurora borealis (northern lights) 
and the aurora australis are due to 
energetic charged particles—trapped 
from the solar wind while some may be 
due to ionization of neutral species by 
cosmic rays.   When these particles 
collide with oxygen or nitrogen, they can 
cause excitation to a higher energy state 
which, upon decay, results in photon 
emission. 
 
         
                From Northwest Suburban Astronomers 
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Why do the lights appear mainly at the northern and southern 
poles?  The ionized particles are trapped by the earth’s 
magnetosphere where they form belts of plasma—the Van 
Allen radiation belts.  At the earth’s magnetic poles, many of 
the particles are reflected, with only the most energetic 
traveling on the atmosphere, into the region of the poles 
where they collide with O2 or N2 which, in turn leads to the 
aurora display.         

               From University of Michigan 
 

Comets (Greek for “hairy star”) are objects which orbit about the sun, sometimes in quite 
elongated elliptical orbits.  When far from the sun, only their heads are visible.  As they draw 
closer to the sun, they develop two tails, an “ion tail” and a “dust tail.”   

 
The ion tail is composed of neutral gas molecules which 
are ionized by the UV photons and then swept away 
from the sun by solar wind and which are visible 
because they fluoresce (they often appear blue since the 
dominate ion species CO+ scatters blue well).  Being 
molecular in size these ions form a tail that points 
directly away from the sun, even when the comet moves 
away from the sun, and is relatively narrow.     
      
The dust tail consists of more massive dust particles 
which have been moved away from the comet’s center 
by radiation pressure.  They are visible because they 
reflect the sun’s light.  Radiation pressure is due to 
momentum transfer from the photons of the sun’s 
radiation.  

Two tails of Hale-Bopp ~ David Jewitt 
 Institute for Astronomy – U. of Hawaii 

p = E/c = hf/c = hλ 

An interesting detail of the dust tail is that it is slightly curved, an effect especially noticeable 
near the sun.  This is due to the dust particles having a greater radius from the sun without 
having gain any speed, making their period of revolution about the sun longer. 
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Lightning 
Raindrops experience a net loss of electrons during their 
trip from the clouds to the earth.  The result is a tendency 
for the earth to be net positive.   Another result is that the 
upper regions of clouds tend to have an excess of 
electrons and their lower regions to be positive.  Thi
charge separation gives rise to lightning discharges with
and between clouds as well as from cloud to groun

s 
in 

d.   
 
Charge separation between the cloud and earth produce a 
strong electric field.  The electric field which results can be 
sufficiently strong to ionize the air which results in stepped 
leaders, negative discharges which head toward the 
ground.  Lightning is typically initiated in the cloud since 
thinner air is more easily ionized.   As these negative 
leaders approach the surface of the earth, a positive leader 
from the earth is formed, which upon connecting with the 
negative leader from the cloud, forms a complete 
conducting path from the cloud to ground. After the discharge path has been established the 
much brighter “return stroke” occurs carrying high currents and dissipating a large amount of 
energy. 
 
 
Electrostatic filters 
The emissions from coal-fired plants include a wide variety of trace 
materials in addition carbon compounds, including heavy metals and 
radioactive materials. 
 
Design an electrostatic filter for an electric utility in order to remove 
particulate emissions from their coal-fired plants.  The initial design will be 
an array of plate structures like that shown below.  The particles have a 
mass of less than 1 mg and are given a charge  
of 10-12 C.  The emissions total 2 tons/day.  
 
Find the voltage and power required to remove the particulate 
emissions. To find the voltage required, allow that the particles can begin 
at the positive plate.   To determine the power required, assume that, on 
average, the particles begin middle distance between the plates. 

 

From the Franklin Institute 
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Integrated passive devices 
Supplying the highest frequency currents in high-speed systems is the most difficult challenge.  
High-frequency decoupling capacitors are placed close as possible to integrated circuit (IC) 
chips in order to limit inductance and careful attention is paid to their mounting.  Decoupling 
capacitors are designed for low equivalent series resistance (ESR) and low equivalent series 
inductance (ESL).  The purpose of this careful design and manufacture is to allow decoupling 
capacitors to effectively supply high-frequency current while maintaining a constant voltage.  
Decoupling above 100MHz present challenges when standard SMT capacitors are used and 
decoupling above 500MHz typically requires special low-inductance capacitors.  These 
capacitors are often four-lead capacitors to reduce magnetic coupling which can, in turn, result 
in a more stable voltage at the chip.  Integrated capacitors 
are readily designed with a lower inductance than discrete 
capacitors because of the fundamental different current 
paths.  In the leads of the SMT capacitor, the current are in 
the same direction whereas in the plates of an integrated 
capacitor, the leads are much shorter and the current on the 
plates are in opposite directions.  This is the fundamental 
physical reason that integrated capacitors have a much 
greater potential for power bus decoupling at high 
frequencies.    

Further investigation in this area is needed for decoupling 
capacitors, for RC terminations for high-speed lines, and for filtering applications.   Motivations 
for widespread use of integrated passives include size reductions through fewer mounted 
components, cost savings through simpler packaging, reliability improvements through fewer 
solders, SI improvements through shorter paths with fewer discontinuities, and high frequency 
performance improvements through improved placement.   

 
Sensors 
The capacitance of the structure is determined by the geometry of the conductors and the 
permittivity of the insulation.   

 
Parallel Plate Capacitor 
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If the plate separation is small compared to their area, the capacitance is simply related to d, A, 
and ε.   

A
C = 

d
ε  

 
While this relation holds in detail only for the parallel plate capacitor, it does show the general 
trends that hold true for all capacitors.  The capacitance increases as the insulator permittivity 
increases, increases as the conductor area increases, and decreases as the conductor 
separation increases.  

,
,

A, d       C
In summary   

A, d       C
ε

ε

↑ ↑ ↓ ⇒ ↑

↓ ↓ ↑ ⇒ ↓

⎧
⎨
⎩

 

Capacitive sensors change their 
capacitance due to either 
changes in geometry (plate 
separation, plate area) or/and 
due to changes in permittivity.   

 in 

s is 

   
Micro-electromechanical systems 
(MEMS) based accelerometers 
are standard sensors used
deploying air bags in 
automobiles.   
 
The accelerometer can be 
modeled as a 2nd-order system 
consisting of a mass, a spring, 
and a damper.    The mas
primarily that of the proof mass.   
 
The spring constant is 
determined by the spring elements between the proof mass and the accelerometer substrate.  
Damping is mainly determined by the viscous damping of the accelerometer atmosphere—often 
“squeezed film damping” due to the small dimensions of the device. 

        MEMS Accelerometer    
(adapted from Analog Devices) 

  
 
 
 
 
 
 

 38



The sensor is comprised of two capacitors connected by a common plate as shown below in a 
simplified diagram. 

 
Simplified Functional Diagram of MEMS Accelerometer 

 
The capacitors in a typical MEMS accelerometer at rest have capacitances of about 0.1 pF with 
a gap distance of approximately 1.3 μm.   

( )(1,2) o
o

o

0.1 pF xC  =   0.1 pF 1           (for x << x )xx1  x
≅

±
∓  

MEMS accelerometers are often designed so that they remain very nearly in quasi-static 
steady-state during acceleration.  That is, their time constants are much smaller than those 
involved in the acceleration.    
 

 

2

2

d x dx
equation of motion:       m  + b  + kx = 0

dt dt

Mechanics of MEMS Accelerometer 
 
In this quasi-static case, the derivatives can be neglected. 

2
n

ma a a
kx = ma            x =  =   =  

k k m ω
⇒  

The basic trade-off can be seen to be one between sensitivity and speed.  To make the device 
able to respond more quickly, the natural frequency should be increased—either by increasing 
the spring constant or by reducing the proof mass.  Doing so, however will cause x to be smaller 
for a given acceleration and thus cause the capacitance to deviate less from its nominal value. 
Suppose the natural frequency, ωn, is 50 kr/s.   
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What is the displacement for a = 30g? 

( )
( )

2

2

30 9.8 m/s
 x =  = 0.118 m

50000 r/s
μ  

This would result in the two capacitances being 

(1,2)

0.092 pF0.1 pF
C  =  = 

0.118 0.11  pF 1  1.3±

⎧
⎨
⎩

 

Capacitive humidity sensors employ a polymer or oxide film as the dielectric between the 
capacitor plates.  One of the plates is porous so that the film is exposed to the atmosphere in 
which the humidity is being measured, and, as the humidity changes, the water absorbed by the 
film varies.   

 
Capacitive Humidity Sensor (from Rotronic-USA) 

 
Since the low frequency permittivity of water is approximately 80εo compared to around 3-10 for 
many polymers and oxides, it can readily be appreciated that the permittivity of the film will be 
dependent on the amount of water absorbed by the film, the result is that the sensor’s 
capacitance responds to changes in humidity. 

A dC d A dC d A d
C =          =  =  = 

d dh dh d d dh d dh
ε ε

ε ε
ε

⇒ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

What is required for this type of sensor is the relation between the permittivity, ε, and the 
humidity, h.  Typical capacitances for existing sensors are between 100 and 500 pF at 50% 
relative humidity (RH) and 25 °C.  Sensitivity is around 0.2 to 0.5 pF per 1% change in RH.  
Response times for capacitive humidity sensors are in the range of tens of seconds. 
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Table 1: Capacitive sensors 

Types Principle of Operation Measurement Uses 

Pressure  Geometry varies with 
pressure   

Capacitive pressure sensors are typically formed by forming closed cavities 
which contain capacitor conductors—typically one located on a membrane 
exposed to pressure to be measured.  Varying the pressure varies the plate 
separation and so varies the capacitance. 

Displacement  Geometry varies with 
displacement  

One plate is usually fixed with the other movable.  Capacitance displacement 
sensors are made which have resolutions of less than 10 pm 

Humidity Permittivity varies with 
humidity 

Water is absorbed by an oxide or polymer dielectric.  The permittivity of the 
insulator between capacitor conductors depends on the amount of water 
absorbed which varies with humidity. 

Capacitive humidity sensors have become more commonly used than 
resistive sensors and can be used in many chemically harsh environments. 

Accelerometer Geometry varies with 
acceleration  

Vibration control in hard-disk drives. 

Vibration detection in various consumer products. 

Avionic controls and safety systems. 

MEMS-based capacitive accelerometers are widely used to deploy 
automobile air bags. 

Proximity Geometry and/or 
permittivity varies with 
proximity 

Detection of liquid level, products in inspection lines and in assembly lines.  
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Semiconductor characterization – Hall effect 
Given the doped silicon below, find Vh if the silicon is 
 i) doped with n phosphorous atoms per unit volume 
 ii) doped with p boron atoms per unit volume 

 

 
 
 
 
 
 
 
 
High energy physics – the cyclotron 
A deuterium particle with mass 3.34 (10-27) kg and charge 1.6(10-19) C is produced and 
accelerated in a cyclotron with a radius of 1m and a magnetic field of 2 Wb/m2.  Calculate the 
energy of the particle at the exit. 
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